Transferability improvement in short-term traffic prediction using stacked LSTM network

نویسندگان

چکیده

Abstract Short-term traffic flow forecasting is a key element in Intelligent Transport Systems (ITS) to provide proactive state information road network operators. A variety of methods predict variables the short-term can be found literature, ranging from time-series algorithms, machine learning tools and deep selective hybrid these approaches. Despite advances prediction techniques, challenging problem that affects application such real world prevalence insufficient data across an entire network. It rare extensive historical training required for model are available all links city. In order address this insufficiency problem, paper applies transfer techniques prediction. All used were collected Highways England networks UK. The results show through improving transferability learning-based models, computational burden due process significantly reduced accuracy under deficient scenarios improved one-step ahead However, gradually decreases multi-step also proposed method highly dependent upon consistency between datasets but less on geographical attributes links.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

Short-term traffic forecasting based on deep learning methods, especially long-term short memory (LSTM) neural networks, received much attention in recent years. However, the potential of deep learning methods is far from being fully exploited in terms of the depth of the architecture, the spatial scale of the prediction area, and the prediction power of spatial-temporal data. In this paper, a ...

متن کامل

Short - Term Traffic Prediction Using a Binary Neural Network

This paper presents a binary neural network algorithm for short-term traffic flow prediction. The algorithm can process both univariate and multivariate data from a single traffic sensor using time series prediction (temporal lags) and can combine information from multiple traffic sensors with time series prediction ( spatial-temporal lags). The algorithm provides Intelligent Decision Support (...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Short-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)

The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transportation Research Part C-emerging Technologies

سال: 2021

ISSN: ['1879-2359', '0968-090X']

DOI: https://doi.org/10.1016/j.trc.2021.102977